Search results for " CIRCUIT"
showing 10 items of 634 documents
An over-the-distance wireless battery charger based on RF energy harvesting
2017
An RF powered receiver silicon IC (integrated circuit) for RF energy harvesting is presented as wireless battery charger. This includes an RF-to-DC energy converter specifically designed with a sensitivity of -18.8 dBm and an energy conversion efficiency of â¼45% at 900 MHz with a transmitting power of 0.5 W in free space. Experimental results concerned with remotely battery charging using a complete prototype working in realistic scenarios will be shown.
Long-range intralaminar noise correlations in the barrel cortex
2015
Identifying the properties of correlations in the firing of neocortical neurons is central to our understanding of cortical information processing. It has been generally assumed, by virtue of the columnar organization of the neocortex, that the firing of neurons residing in a certain vertical domain is highly correlated. On the other hand, firing correlations between neurons steeply decline with horizontal distance. Technical difficulties in sampling neurons with sufficient spatial information have precluded the critical evaluation of these notions. We used 128-channel “silicon probes” to examine the spike-count noise correlations during spontaneous activity between multiple neurons with i…
Smart cameras on a chip: using complementary metal-oxide-semiconductor (CMOS) image sensors to create smart vision chips
2020
Abstract: In this chapter, we introduce the fundamental concept of smart cameras on a chip or smart vision chips that simultaneously integrate the same die image capture capability and highly complex image processing. Successive technology scaling has made possible the integration of specific processing elements designed at chip level, at column level or at pixel level. To illustrate this continuous evolution, we survey three different categories of vision chips, exploring first the pioneering works on artificial retinas, then describing the most significant computational chips, and finally presenting the most recent image processing chips able to perform complex algorithms at a high frame …
The promise of spintronics for unconventional computing
2021
Novel computational paradigms may provide the blueprint to help solving the time and energy limitations that we face with our modern computers, and provide solutions to complex problems more efficiently (with reduced time, power consumption and/or less device footprint) than is currently possible with standard approaches. Spintronics offers a promising basis for the development of efficient devices and unconventional operations for at least three main reasons: (i) the low-power requirements of spin-based devices, i.e., requiring no standby power for operation and the possibility to write information with small dynamic energy dissipation, (ii) the strong nonlinearity, time nonlocality, and/o…
Carrier transport mechanism in the SnO(2):F/p-type a-Si:H heterojunction
2011
We characterize SnO(2):F/p-type a-Si:H/Mo structures by current-voltage (I-V) and capacitance-voltage (C-V) measurements at different temperatures to determine the transport mechanism in the SnO2:F/p-type a-Si:H heterojunction. The experimental I-V curves of these structures, almost symmetric around the origin, are ohmic for vertical bar V vertical bar< 0:1 V and have a super-linear behavior (power law) for vertical bar V vertical bar < 0:1 V. The structure can be modeled as two diodes back to back connected so that the main current transport mechanisms are due to the reverse current of the diodes. To explain the measured C-V curves, the capacitance of the heterostructure is modeled as the …
Characterization of thermo-optical 2×2 switch configurations made of Dielectric Loaded Surface Plasmon Polariton Waveguides for telecom routing archi…
2012
We report on the characterization of thermo-optic switch structures based on Dielectric Loaded Surface Plasmon Polariton Waveguide for high data bit rate transfer. Performances are extracted by Leakage Radiation Microscopy and compared to numerical results.
Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields.
2021
We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, which involves demanding square-wave voltage amplifiers, phase-locked to the THz pulse train, as well as an electronic circuit for the demodulation of the readout signal. Here, we demonstrate that the SSBCD technique can be operated via a very simple homodyne scheme, exploiting plain static bias voltages. We show that the homodyne SSBCD signal turns into a bipolar transient when the stat…
Computer-aided analysis and design procedure for rotating induction machine magnetic circuits and windings
2018
The aim of this study is to present a new, accurate, and user-friendly software procedure for the analysis and rapid design of rotating induction machine windings, considering both the electric and the magnetic specifications of the machine itself. This procedure is a valid aid for quick first stage design without the necessity of using finite element method (FEM)-based design procedures. FEM can be used in a second design phase in order to refine the first stage results. The design procedure is hereafter outlined and some examples show its capability.
Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites
2003
Insect neurons are individually identifiable and have been used successfully to study principles of the formation and function of neuronal circuits. In the fruitfly Drosophila, studies on identifiable neurons can be combined with efficient genetic approaches. However, to capitalise on this potential for studies of circuit formation in the CNS of Drosophila embryos or larvae, we need to identify pre- and postsynaptic elements of such circuits and describe the neuropilar territories they occupy. Here, we present a strategy for neurite mapping, using a set of evenly distributed landmarks labelled by commercially available anti-Fasciclin2 antibodies which remain comparatively constant between s…
Analysis of bias-shift effects in free-running and injection-locked negative resistance oscillators
2012
In this paper, the interaction between DC and RF in quasi-sinusoidal free-running and injection-locked oscillators is addressed. To account for and illustrate in a user-friendly manner the bias-shift related effects stemming from such interaction, a frequency-domain method of analysis has been developed for a rather wide class of negative-resistance circuits. Grounding on a first-approximation exact perturbation-refined approach, it permits computationally efficient simulation of the oscillator behavior directly in terms of the DC and RF signals evolutions (dynamical complex envelopes). In fact, it allows the investigation of both steady-state and transient operation of the shifting-bias dr…